Это зависит от того, кого вы спросите. По данным Исследовательской службы Конгресса США, эта цифра составляет 6 640 миль (10 690 км). Но если обратиться к данным Национального управления океанических и атмосферных исследований (NOAA), то общая протяженность прибрежных границ штата составляет 33 904 мили (54 563 км).
«Так что же здесь происходит? Почему существуют разные определения береговой линии или длины береговой линии?» — спрашивает Райан Стоа, доцент права в Университете штата Луизиана. Он впервые наткнулся на эти «дико расходящиеся отчеты», когда изучал изменения береговой линии и их связь с правами землевладельцев. Стоа был озадачен расхождениями между федеральными агентствами, и его вопросы о длине береговой линии привели его к любопытной математической головоломке, которая не дает покоя экспертам уже несколько десятилетий: парадоксу береговой линии.
Парадокс береговой линии возникает потому, что берега не являются прямыми линиями, и это затрудняет или делает невозможным их точное измерение. С самолета видно, что побережье имеет множество особенностей, включая заливы, бухты, скалы и острова. И чем ближе вы смотрите, тем больше укромных уголков вы обнаружите.
В результате длина береговой линии зависит от размера линейки, которую вы используете. «Если использовать очень длинную линейку для измерения береговой линии, то можно получить просто большой квадрат вокруг страны или острова, — объясняет Кэтрин Саммлер, географ из Университета Твенте в Нидерландах. Но если вы используете линейку меньшего размера, вы захватите больше сложностей, что приведет к более длинному измерению». Таким образом, возникает парадокс.
Эта несогласованность измерений восхищала математиков на протяжении десятилетий. В работе, опубликованной в 1961 году, английский математик Льюис Фрай Ричардсон отметил, что в разных странах одна и та же общая граница имеет разную длину из-за различий в шкале измерений. В 1967 году математик Бенуа Мандельброт развил работу Ричардсона, написав классическую научную статью о длине береговой линии Великобритании. Впоследствии это привело его к открытию и концептуализации формы фракталов — кривых, сложность которых возрастает по мере увеличения масштаба. С математической точки зрения, длина всех фракталов расходится до бесконечности, поскольку теоретически можно бесконечно увеличивать эти фигуры.
Это справедливо и для береговых линий. Технически можно измерить береговую линию вплоть до песчинки или атомного уровня или даже меньше, что означает, что длина береговой линии может быть близка к бесконечности, говорит Сэммлер.
Однако измерения длины береговой линии существуют, прежде всего потому, что карты разбивают ландшафты на более простые линии и формы. Дюймы на карте могут равняться расстоянию в реальной жизни, в зависимости от разрешения карты.
Проблема в том, что разные наборы данных имеют разное разрешение, что приводит к разной длине береговой линии. Эти несопоставимые показатели могут иметь реальные последствия. Например, международные законы, такие как Конвенция ООН по морскому праву, зависят от прибрежных базовых линий, чтобы определить, «насколько далеко простираются права на ресурсы каждой прибрежной страны», — сказал Сэммлер, — «что может иметь очень важное значение для того, сколько прав на ресурсы может получить [страна]». Несмотря на то, что официальные органы, такие как ООН, имеют спецификации для разрешения картографирования, существует достаточно много возможностей для интерпретации их рекомендаций между странами.
«Мы просто должны договориться о том, какую единицу измерения мы используем», — говорит Стоа, — «А проблема, с практической точки зрения, заключается в том, что нет единого мнения о том, какую единицу измерения следует использовать для измерения береговых линий».
Береговые линии также являются подвижными образованиями. Приливы, эрозия берегов и повышение уровня моря — все это способствует изменению состояния береговых линий. Поэтому карты 1900-х годов или даже спутниковые снимки, сделанные несколько лет назад, могут не совпадать с тем, какими на самом деле являются береговые линии сегодня. «Чтобы изменить эти границы, не нужно большого повышения уровня моря», — говорит Сэммлер.
Так сколько же береговой линии у Аляски, Соединенных Штатов или всей нашей планеты? Возможно, мы никогда не узнаем точного числа. Это парадокс, и, как многие вещи в природе, он ускользает от нашей способности дать ему определение.
Некоторые исследователи предлагают использовать новые технологии, такие как лазерное сканирование и спутниковые данные, чтобы определить длину береговой линии более точно. Эти методы могут уловить мельчайшие детали географии, исходя из которых можно создать более полные и актуальные карты. Тем не менее, возникают новые вопросы о том, как интерпретировать эти данные и как учитывать время, в течение которого береговая линия может изменяться.
С точки зрения экологии, способность измерять береговые линии точно имеет важные последствия. Понимание изменений береговой линии может помочь в разработке стратегий защиты островов и побережий от последствий климатических изменений. Специалисты в области охраны окружающей среды подчеркивают, что учет не только физической длины, но и состояния экосистем по всей линии берега стал критически важным для устойчивого управления природными ресурсами.
В конечном счете, ситуация с береговой линией Аляски не только иллюстрирует сложности математического измерения, но и подчеркивает необходимость более глубокого понимания разнотипных данных. Парадокс береговой линии призывает нас внимательно относиться к тому, как мы воспринимаем и измеряем окружающий нас мир.